Cell-type-specific resonances shape the responses of striatal neurons to synaptic input.
نویسندگان
چکیده
Neurons respond to synaptic inputs in cell-type-specific ways. Each neuron type may thus respond uniquely to shared patterns of synaptic input. We applied statistically identical barrages of artificial synaptic inputs to four striatal cell types to assess differences in their responses to a realistic input pattern. Each interneuron type fired in phase with a specific input-frequency component. The fast-spiking interneuron fired in relation to the gamma-band (and higher) frequencies, the low-threshold spike interneuron to the beta-band frequencies, and the cholinergic neurons to the delta-band frequencies. Low-threshold spiking and cholinergic interneurons showed input impedance resonances at frequencies matching their spiking resonances. Fast-spiking interneurons showed resonance of input impedance but at lower than gamma frequencies. The spiny projection neuron's frequency preference did not have a fixed frequency but instead tracked its own firing rate. Spiny cells showed no input impedance resonance. Striatal interneurons are each tuned to a specific frequency band corresponding to the major frequency components of local field potentials. Their influence in the circuit may fluctuate along with the contribution of that frequency band to the input. In contrast, spiny neurons may tune to any of the frequency bands by a change in firing rate.
منابع مشابه
CALL FOR PAPERS Neuronal Diversity: Categorizing Types of Neurons Cell-type-specific resonances shape the responses of striatal neurons to synaptic input
Beatty JA, Song SC, Wilson CJ. Cell-type-specific resonances shape the responses of striatal neurons to synaptic input. J Neurophysiol 113: 688–700, 2015. First published November 19, 2014; doi:10.1152/jn.00827.2014.—Neurons respond to synaptic inputs in cell-type-specific ways. Each neuron type may thus respond uniquely to shared patterns of synaptic input. We applied statistically identical b...
متن کاملResonances 1 Shape the Responses of Striatal Neurons to Synaptic Input
Cell-type Specific Resonances 1 Shape the Responses of Striatal Neurons to Synaptic Input 2 3 Joseph A. Beatty, Soomin C. Song and Charles J. Wilson 4 Department of Biology 5 University of Texas at San Antonio 6 San Antonio, TX 78249, USA 7 8 9 10 11 12 13 14 15 16 Address Correspondence To: Charles J. Wilson 17 Department of Biology 18 University of Texas at San Antonio 19 San Antonio, TX 7824...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملDifferential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons
The striatum integrates information from multiple brain regions to shape motor learning. The two major projection cell types in striatum target different downstream basal ganglia targets and have opposing effects on motivated behavior, yet differential innervation of these neuronal subtypes is not well understood. To examine whether input specificity provides a substrate for information segrega...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 113 3 شماره
صفحات -
تاریخ انتشار 2015